Objective: To find a formula for the nth term of an arithmetic sequence and to find specified terms of arithmetic sequences.

Vocabulary

nth (or general) term of an arithmetic sequence In an arithmetic sequence with first term t_1 and common difference d, the nth (or general) term is given by

$$t_n = t_1 + (n-1)d$$
.

Arithmetic means The term(s) between two given terms of an arithmetic sequence Example: For the arithmetic sequence 5, 9, 13, 17, . . . , the numbers 9 and 13 are two arithmetic means between 5 and 17.

The arithmetic mean A single arithmetic mean between two numbers. The arithmetic mean, or average, of two numbers a and b is the number $\frac{a+b}{2}$. Example: The arithmetic mean of 5 and 17 is $\frac{5+17}{2}$, or 11.

Example 1 Find a formula for the nth term of the arithmetic sequence 11, 17, 23, 29

Solution Substitute 11 for t_1 and 6 for d in the formula $t_n = t_1 + (n - 1)d$ The first term, t_1 , is 11. The common difference, d, is 17 - 11; or 6.

$$t_n = 11 + (n - 1)6$$

= 11 + 6n - 6
= 5 + 6n

1. $t_n = 4 + 3n$ 2. $t_n = 5n$ 3. $t_n = 9 - 5n$ 4. Find a formula for the *n*th term of each arithmetic sequence. 2. $t_n = 5n$ 3. $t_n = 9 - 5n$

 $\therefore t_n = 5 +$

6n

4.
$$t_n = -6 + 5n$$
 5. $t_n = 2 - 4n$
nce. 6. $t_n = 13 + 8n$

4. $-1, 4, 9, 14, \ldots$ **1.** 7, 10, 13, 16, . . . ò 2. 5, 10, 15, 20, ...

$$6. t_n = 13$$

$$3. 4, -1, -6, -11, \dots$$

$$5. -2, -6, -10, -14, \ldots$$

$$0, -14, \ldots$$
 6. 21, 29, 37, 45, ...

Example 2 Find t_{15} for the arithmetic sequence 11, 17, 23, 29, . . .

Solution Use the formula
$$t_n = 5 + 6n$$
 from the solution of Example 1. $t_{15} = 5 + 6(15) = 95$

Example 3 Find
$$t_{25}$$
 for the arithmetic sequence in which $t_2 = -5$ and $t_6 = 7$

Solution Substitute -5 for t_2 and 7 for t_6 in the formula $t_n = t_1 + (n - 1)d$ to obtain a system of equations in t_1 and d.

$$t_2 = t_1 + (2 - 1)d \longrightarrow -5 = t_1 + d$$

 $t_6 = t_1 + (6 - 1)d \longrightarrow 7 = t_1 + 5d$

Solve the first equation for t_1 : $t_1 =$ - d -

(Solution continues on the next page.)

Study Guide, ALGEBRA AND TRIGONOMETRY, Structure and Method, Book 2 Copyright © by Houghton Mifflin Company. All rights reserved.

L8

NAME

DATE

11-2 Arithmetic Sequences (continued)

Substitute -d - 5 for t_1 in the second equation and solve for d.

$$7 = -d - 5 + 5d$$

$$12 = 4d$$

$$d = 3$$

 $t_n = t_1 + (n - 1)d$, find t_{25} . Then $t_1 = -3 - 5 = -8$. Now using $t_1 = -8$ and d = 3 in the formula

$$t_{25} = -8 + (25 - 1)(3)$$

= $-8 + 24(3)$

Įţ

2

$$\therefore t_{25} = 64$$

Find the specified term of each arithmetic sequence.

7. 4, 7, 10, 13, ...;
$$t_{19}$$
 58

8. 2, 10, 18, 26, . . . ; t₅₆ **442**

9. 90, 87, 84, 81, ...;
$$t_{20}$$
 33 10. 1, 1.25, 1.5, 1.75, ...; t_{33} 9 11. -3, -12, -21, ...; t_{50} -444 12. 19, 8, -3, ...; t_{41} -421

13.
$$t_1 = 2$$
, $t_4 = 8$; t_{14} 28

14.
$$t_2 = -5$$
, $t_4 = -11$; t_{10} -29

15.
$$t_6 = 22$$
, $t_{10} = 38$; t_1 **2**

16.
$$t_{10} = 70$$
, $t_{15} = 60$; t_5 **80**

Example 4

a. The arithmetic mean is the average of
$$-3$$
 and 8.

b. Insert three arithmetic means between 10 and 26

Solution

$$\frac{-3+8}{2} = \frac{5}{2} = 2.5$$

b. Set up the sequence:
$$10, \frac{?}{10}, \frac{?}{10}, \frac{?}{10}, \frac{?}{10}, \frac{?}{10}$$

In this sequence, 10 is the first term and 26 is the fifth term. So to find d, substitute 10 for t_1 and 26 for t_5 in the formula $t_n = t_1 + (n-1)d$.

$$26 = 10 + (5 - 1)d$$
$$16 = 4d$$
$$d = 4$$

The three arithmetic means are obtained by adding 4 to successive terms: 10, 14, 18, 22, 26

Find the arithmetic mean of each pair of numbers.

17.
$$-2, 9$$
 3.5

21. -1, 5

19.
$$\frac{2}{3}$$
, $\frac{3}{5}$ $\frac{19}{30}$

20.
$$\sqrt{3}$$
, $2\sqrt{3}$ $\frac{3\sqrt{3}}{2}$

Insert (a) two and (b) three arithmetic means between each pair of numbers.

Additional answers for Exs. 21-24 are given at the back of this Answer Key

173