Answers

<u>Instructions</u>: Show all steps that lead to your solution. Check your answer on the blog.

Section 3-8

Definitions:

- > Function
- > Domain
- > Range

SKILLS TO KNOW:

- Graph a function over a given domain.
- Evaluate a function at a given input, for example, find f(2) if f(x) = x + 3
- Evaluate composite functions, for example find f(g(3)) if f(x) = x + 3 and g(x) = 2x 5.
- Determine the range of a function over a given domain.
- Determine the domain of a function by finding the places where it "blows up" (becomes undefined).
- 1. Given that $f(x) = -3x^2 + 10$ and g(x) = |x-4| 6, find the following:

(A)
$$f(-2) = -2$$

(B)
$$f(4) = -38$$

(C)
$$f(0) = 0$$

(D)
$$g(-6) = 4$$

(E)
$$g(4) = -6$$

(F)
$$g(0) = -2$$

(G)
$$g(f(3)) = 15$$

(H)
$$f(g(-2)) > 0$$

(I)
$$g(g(g(-2))) = 0$$

(J)
$$(f+g)(2) = -6$$

(K)
$$(f-g)(3) = -12$$

(L)
$$(f \cdot g)(-2) = 0$$

(M)
$$(f/g)(4) = \frac{19}{3}$$

(N)
$$f(2g(-3)) = -2$$

2. Find the domain of each function.

$$(A) \quad f(x) = \sqrt{3x - 2}$$

(B)
$$g(x) = \frac{2}{(x-1)(x+4)}$$

(C)
$$h(x) = \frac{\sqrt{3-x}}{x^2 - 25}$$

{x: x \le 3, x \neq -5} (you do not need to state that

3. Find the range of F(x) = |1 - x| over the domain $D = \{-2, -1, 0, 1, 2\}$

Section 3-9

Definitions:

- > linear function
- > constant function,
- > rate of change

SKILLS TO KNOW:

- Determine the equation of a linear function based on given information, for example either the slope and a point or two points.
- Evaluate functions after finding the equation of the function.
- Solve word problems by creating a linear function and evaluating it according to the problem.
- Find an equation of the linear function f for the given information and find f(-10) for each. 1.

(A)
$$f(0) = 3$$
 and $f(x)$ decreases by 2 when x increases by 3.
 $b = 3$ $m = -\frac{2}{3}$ $f(x) = -\frac{2}{3} \times + \frac{2}{3}$

$$m = -\frac{2}{3}$$

(B)
$$f(4) = -5$$
 and $f(-3) = 3$
 $(4, -5)$ $(-3, 3)$

$$f(x) = -\frac{8}{7}x - \frac{3}{7}$$

$$f(-10) = 11$$

(A) Draw a function box and label the input and output with words and a variable. Think about what is happening...when you hang a weight on a spring, it stretches.

full Estretch E

(B) Find a linear function using the given information.

$$f(mass) = length$$

 $f(x) = \frac{3}{2} \times + 64$

(C) Find the natural (un-stretched) length of the spring

- 3. Suppose the number of hours an algebra student studies and the grade on a test is a linear function. A student who spent 1 hour studying earned a 76. A student who spent 3 hours earned an 88.
 - (A) Find a linear function using the given information. Think about the input and output first.

$$f(hours) = grade f(1) = 76 f(3) = 88$$

 $f(x) = lex - 70$

(B) What score would a student who studied for 4 hours earn?

(C) How many hours would a student need to study to earn a grade of 80?

Definitions:

- > relation
- > function
- > vertical lines test

SKILLS TO KNOW:

- Determine if a relation is a function by inspecting the ordered pairs or using the vertical line test on a graph of the function.
- Find the domain of a relation, graph it, and determine if it is a function.
- <u>2-4</u>: Give the domain and range of each function shown. Then state whether it is a function or not.

$$D = \{x: -2 \le x \le 0\}$$

$$R = \{y: -2 \le y \le 2\}$$

9-10: Determine if each relation is a function. If not, state why.

9.
$$\{(-1, 2), (3, -1), (2, -2), (-1, -2)\}$$

10.
$$\{(1, 3), (3, -1), (1, -1), (-2, -1)\}$$

$$-1 > 2$$

Pepeated
Repeated
Not a function!

Section 10-3

Definitions:

Composite

Composition

Inverse function

SKILLS TO KNOW:

- Find the *composite* of two functions: h(x) = f(g(x)).
- State the meaning on inverse functions: Two functions are inverses only if f(g(x)) = x and g(f(x)) = x.
- Simple example: $f(x) = x^2$ and $g(x) = \sqrt{x}$ because $f(g(x)) = (\sqrt{x})^2 = x$ and $g(f(x)) = \sqrt{x^2} = x$.
- Find the inverse of a function, if it exists: (1) write y = f(x); (2) swap x and y; (3) solve for y; (4) replace y with $f^{1}(x)$; (5) check the domains
- <u>1-2</u>: Suppose $f(x) = \frac{x}{2}$, g(x) = x 3, and $h(x) = \sqrt{x}$. Find a real-number value or an expression in x for each of the following. If no real value can be found, say so.

1. a.
$$h(f(72)) = 6$$

b.
$$h(f(50)) = 5$$

c.
$$h(f(x)) = \sqrt{\frac{x}{2}}$$

$$d. f(f(x)) = \frac{X}{Y}$$

2. a.
$$g(h(9)) = \bigcirc$$

b.
$$g(h(3)) = \sqrt{3} - 3$$
 c. $g(h(x)) = \sqrt{x} - 3$

c.
$$g(h(x))=\sqrt{x}-3$$

d.
$$g(g(x))$$

<u>3-5</u>: Find the inverse of each function algebraically.

$$3. f(x) = 2x - 3$$

4.
$$g(x) = \frac{1}{x-1}$$

$$5. h(x) = 2x^3 - 1$$

$$f^{-1}(x) = \sqrt[3]{x+1}$$