



# **Answer Key**

- 1. B DOKI
- 2. C DOK2
- 3. D DOK2
- C DOK2
- D DOK2
- B DOK2
- D DOK2
- B DOK1
- 9.

| Term           | Value  |
|----------------|--------|
| a <sub>2</sub> | 8,000  |
| a <sub>3</sub> | 2,000  |
| a <sub>5</sub> | 125    |
| a <sub>7</sub> | 7.8125 |

DOK2

**10.** 
$$a_n = a_{n-1} \cdot 1.5$$
,  $a_1 = 10$ ;  $a_n = 10 \cdot 1.5^{n-1}$ ; Sample answer:

Using the recursive formula:

$$a_2 = 10 \cdot 1.5 = 15$$
  
 $a_3 = 15 \cdot 1.5 = 22.5$ 

 $a_{1} = 22.5 \cdot 1.5 = 33.75$ 

Using the explicit formula:

$$a_4 = 10 \cdot 1.5^{4-3} = 10 \cdot 1.5^3 = 33.75$$

DOK<sub>2</sub>

11. Geometric: C, D, F

Arithmetic: A, E

Neither: B

DOK2

- **12.** 12; Sample answer:  $a_1 \cdot 5 = 60$ , so  $a_1 = 60 \div 5 = 12$ DOK2
- 13. Part A

$$a_n = 100 \cdot 0.9^{n-1}$$

Part B

\$65.61; 
$$a_5 = 100 \cdot 0.9^{5-1} = 100 \cdot 0.9^4 = 65.61$$
DOK2

14. 33; Sample answer:

If r is the common ratio, then  $3r = a_2$ , and

$$a_2 \cdot 3 = 363$$
. So,  $3r \cdot r = 363$ , or  $3r^2 = 363$ .

Divide each side by 3:  $r^2 = 121$ , so r = 11.

$$a_2 = 3 \cdot 11 = 33$$
 DOK3

## 15. Part A

geometric; Sample answer: The thickness of the stack doubles after each cut. Since there is a common ratio between terms, the sequence is geometric.

## Part B

$$a_n = 0.006 \cdot 2^{n-1}$$

1.536 inches; It is the 9th term, because the first term represents the thickness after 0 cuts, the second term represents the thickness after 1 cut, etc.

#### Part D

Sample answer: 14 cuts; I am about 5 foot 6 inches tall, or 66 inches. Find the value of nso that  $0.006 \cdot 2^{n-1} > 66$ . Divide each side by  $0.006: 2^{n-1} > 11,000$ . Find the smallest power of 2 that is greater than 11,000:

$$2^{13} = 8,192; 2^{14} = 16,384.$$

So, 
$$n - 1 = 14$$
, and  $n = 15$ 

The 15th term represents the thickness after 14 cuts.

$$a_{15} = 0.006 \cdot 2^{15-1} \approx 98.304$$
 DOK3